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An account is given of the Liouville-Green method for the approximate solution, with
error estimates, of linear second-order differential equations, together with certain
extensions of the method. The purpose is to make readily available a range of tech-
niques for use in the two final parts of the present series.

The topics treated include:

(a) the construction of approximations in terms of both elementary and higher
transcendental functions,

(b) the relations between approximations of the same solution in terms of different
functions,

(¢) the identification of solutions and the estimation of connection coefficients,

(d) uniform estimation of the error-control function in problems with more than
one widely ranging parameter,

(¢) the construction of majorants for approximating functions,
the last two being required for the derivation of satisfactory error estimates.

There is little in this part that is new, though a method of constructing approxi-
mations in terms of Bessel functions is developed specifically for application to the
Mathieu equation. Apart from this, some aspects of the presentation are thought to
be novel.
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100 W. BARRETT

1. GENERAL DESCRIPTION

The purpose of these methods is to obtain approximate solutions of second-order homo-
geneous linear differential equations. The basic tool required is the class of Liouville trans-
formations of pairs of variables:

(2, 9) > (& w),

where ¢ is a function of z and w = (d{/dz)? y. The variables may be real or complex and ¢
is required to be twice differentiable with non-vanishing first derivative. The domains of z
and ¢ will be intervals in the real-variable case; if the variables are complex the domains may
be Riemann surfaces rather than regions in the complex plane.

Liouville transformations are characterized by the property that, when applied to a differen-

tial equation of the form
d%y/dz® = F(2) y,

the transformed equation has the same form. It is in fact
d*w/dg? = (dg/dz)~2 [F(2) +}{¢, 2}] w,

where {{, z} denotes the Schwarzian derivative.

Two general properties are of significance in the applications. The first follows immediately
from this characterization: the inverse of a Liouville transformation and the composition of
two Liouville transformations are clearly Liouville transformations wherever they are defined.
The second follows from the above formula; it is that a specified Liouville transformation
applied to a general differential equation of the given type effects a non-homogeneous linear
transformation on its coefficient, the coefficients in this transformation being, of course,
functions.

A differential equation of the form

dy/dz® = {u¥f(2) +4(2)} v, (1.1)

with independent variable z, u being a parameter, for which approximate solutions are sought,
is first reduced by means of a Liouville transformation as specified in (1.4a, b) below to the
similar form

d*w/dg? = {[v*+ ()] (8) +x()} w, (1.2)
¢ being the new independent variable, where the solutions of the equation
d*w/dg? = {w*¢(8) +x(£)} w, (1.3)

referred to as the ‘basic equation’, are expressible in terms of some standard functions whose
properties are taken to be known, and the term 1({) is treated as a small perturbation. Solu-
tions of the basic equation will be called ‘basic functions’; the term x({) in fact appears in
only two of the basic equations discussed below.

The transformed variables (&, w) satisty

d¢/dz = [f(2)/$(O)14, (1.4a)
f(2]ty = [#(0)]F w. (1.46)

Let Y (&) be a solution of (1.3); then the solution of (1.2) having the same value and derivative
as Y({) at some prescribed point ¢, can be expressed by the method of variation of parameters
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MATHIEU FUNCTIONS OF GENERAL ORDER. III 101

as the solution of a certain integral equation. In this way it is possible to show that under
suitable conditions, on a certain interval or region,

w(f) = Y(&) +Y(&) 7, (1.5)
where [7] < exp {c|u|—1 [\gzoazl fw(t) [¢()]F de} -1, (1.5a)

¢ being a positive constant and Y({) a positive real-valued function not depending on the
perturbation function (&), whose behaviour is closely related to that of |¥Y({)|; a similar
formula holds for dw/d{. The symbol ‘var’ denotes the ‘variational operator’ (see Olver
1974, ch. 1, §11).

It is important to notice that this formula is valid for all non-zero values of «, not only for
large values; if # is complex the domain of validity will, however, depend on arg uz. The
constant ¢ may in some cases depend on «, but is bounded if ¥~ is bounded.

If the variable is real, the variation is to be calculated over the interval with end points
o, €, while if the variable is complex, it is to be calculated along a path joining these points
and belonging to an appropriate class to be defined later. Similarly, again under suitable
conditions, there is a solution of (1.2) characterized by the property that it is asymptotically
equal to Y(&) as §{ — oo along a path v, which may be described as ‘originating from infinity’,
and formula (1.5) remains valid with §, replaced by +oco as appropriate, or conventionally by
oo in the complex-variable case. The paths along which the variation is to be calculated will
share a common (infinite) initial arc with y,; but see §4.1.

A simpler form of estimate for # in (1.5), which follows from (1.54), is

7 = |u|~t var ¥(2) O(1), ~ (1.5b)

uniformly provided = var ¥(¢) is uniformly bounded, where

w() = f W(e) [H()]F dr.

A technique for estimating var ¥(¢) is outlined in §5 below.

The appropriate function Y({) has the property that Y({) = Y({) O(1) uniformly and the
reciprocal relation is also satisfied except near zeros of Y({). The remainder term in (1.5) can
thus be directly compared with the principal term; the estimate (1.54) is normally realistic in
the sense that the overestimation factor is bounded except near zeros of Y ({).

In applying these formulae there is no difficulty in principle, though there may be consider-
able difficulty in practice, in taking account of the dependence of the functions f(z), g(z) in
(1.1) on any other parameters. Problems of this kind are not treated in this part III; they are
treated ad hoc as they arise in parts IV and V.

1.1. Some basic equations

(a) In (Olver 1974) three basic equations are considered, with both real and complex
variables. These are described here.

(i) The basic equation d*»/d{? = +u?w has solutions that are exponential, hyperbolic or
circular functions. This equation corresponds to the L.—-G. method proper, and is applicable
on an interval or region in which the function f(z) in (1.1) is free from zeros and singularities.
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102 W. BARRETT

For notational compatibility when making comparison with other basic equations, the variables
(¢, w) in this equation will be renamed (£, v) so that the equation becomes

d%/dé&? = +u, (1.6)
and the corresponding equation (1.2) is
d%/dg? = {+u?+(§)} 0. (1.6a)

With the positive sign in (1.6), either of et*£ may be taken as basic function in (1.5); the
condition to be satisfied by the path of integration in (1.5a) is then that it should be, in the
respective cases, +ué-progressive, that is, that Re ( + «£) should be monotone non-decreasing
on the path; a path on which Re (u£) is constant is of course of both types. It may be con-
venient to choose an odd or even basic function, when £ = 0 will be chosen as initial point
and paths of either type are suitable, but to give estimates on different subdomains.

For the basic equation (1.6) the formula (1.4a) becomes d£/dz = [f(z)]%, so that the for-
mula (1.5) gives for the corresponding solution of (1.1):

y(2) = (1Y (E) + Y () n}

In a region of the z-plane containing zeros or singularities of f(z), £ is a many-valued function
of z; with given initial point z,, the corresponding value £, being either finite or at infinity,
this formula with the estimate (1.5a) is valid on the region accessible from z, by +ué-pro-
gressive paths, as appropriate, which do not pass through such points, often called transition
points of the differential equation. The Mathieu equation is used later to illustrate this.
(ii) The basic equation
d2w/d§? = ulw (1.7)

has solutions that are expressible in terms of Airy functions, a pair of independent solutions being
w = Ai (u¥¢), Bi (u30).

This basic equation is used to derive approximations that remain valid at and in the neighbour-
hood of a point z, where f(z) has a simple zero; the variable { is that solution of (1.44) for
which ¢ = 0 at z,. The resulting transformation is regular at z,, so that, in particular, if g(z)
is analytic at z,, then {(¢) is analytic at { = 0, as are the solutions of both (1.2) and (1.3).

By defining £ = %¢%, the appropriate paths are again + uf-progressive, but may pass through
z,; however, the domain of validity of (1.5) is significantly modified. By taking Y({) = Ai (u#0)
with an arbitrary determination of #%, and initial point such that arg (13¢) = 0, the frontier
of the domain in the z-plane as described under (i) above includes the two-sided arc on which
arg (u¥{) = m; on this cut, £ may be determined by continuation in either sense around ¢ = 0,
and points on the cut are accessible by — u§-progressive paths passing through { = 0 and then
following the cut. Such paths are admissible, and the estimate (1.54) remains bounded and
realistic on and in the neighbourhood of the cut.

(iii) The basic equation

dew/dge = Hul+ (- 1) £} w (1.8)

has solutions {¥Z (u¢?), where Z, denotes a modified Bessel function of order ». This basic
equation is used in the same way as (1.7), but when f(z) has a simple pole at z,. It is not useful
in the context of Mathieu functions, but it may be remarked that, defining £ = {* gives
appropriate paths which are again + ug-progressive, but with a further condition.
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MATHIEU FUNCTIONS OF GENERAL ORDER. III 103

For each of these three basic equations, Olver (1974) gives a construction for asymptotic
series in descending integer powers of the parameter #, with remainder estimates when the
series are truncated which are similar in form to (1.54); for equation (1.6) the series is the
well known Horn-Jeflreys series. If only the principal term of the series is taken, the remainder
estimate is precisely equivalent to (1.5a), though the notation here differs somewhat from
Olver’s.

(b) Two other basic equations are required for application to the Mathieu equation. The
first of these is studied by Olver (1975), but in the real-variable case only; asymptotic formulae
with remainder estimates are obtained, but it did not prove possible to construct satisfactory
asymptotic series. Olver introduces in the remainder formula a ‘balancing function’ which has
a certain degree of arbitrariness; with a particular choice for this function, the estimate in fact
has the form (1.5a) above. The basic equations in question are given in (i) and (ii) below.

(i) The first is
dw/d§? = + tu?(§%—a) w, (1.9)

where the parameter u is taken to be real and « is a second real parameter which takes small
rather than large values. The solutions of (1.9) are expressible in terms of parabolic cylinder
functions; for example, with the positive sign in the equation, two solutions represented in the
notation introduced by Miller (1952) are

U(-tuo, urf), U(—}tuo, ug).

The object of introducing the basic equation (1.9) is to derive approximations whose validity
extends to the neighbourhood of a pair of simple zeros of f(z) in (1.1), with positions depending
on a second parameter and which may coalesce for some value of that parameter. It is there-
fore necessary to construct the Liouville transformation (z, y) - ({, w) in accordance with
(1.44a, b) in such a way that the two zeros of {2—a in (1.9) correspond to the two given zeros
of f(z). Let the latter be z, z,; then it suffices to choose « so that

[Trrenta: =3[ @w-arag

whence a=2 Lﬂ [F(2)]} dz, (1.94)

and then to choose the arbitrary constant in the solution of (1.4a) appropriately. The trans-
formation is then regular at both z, and z,.

Define £ - %f (Z—a)tde. (1.95)

Then in the complex-variable case, if @ # 0, the appropriate paths are once more + ué-
progressive, so the description of the domain of validity of the resulting approximations (1.5)
is similar to that for the equation (1.7). However, the frontier of the region in the z-plane now
includes two cuts, one issuing from each of z,, z;, and the estimate (1.54) remains finite and
realistic on and in the neighbourhood of each.

If « = 0, some modification is necessary. For in this case the simple zeros of f(z) coalesce
in a double zero and there are four principal domains (see (¢) below) which meet at this point;
continuation of £ from any one of these to the opposite domain does not permit the construction
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104 W. BARRETT

of progressive paths with initial point in one and terminal point in the other. It suffices, how-
ever, (cf. Olver 1978) to use paths that pass through the double zero and are + uf-progressive
in each of the two domains, possibly with opposite signs; the signs are determined by the choice
of branches of £. Equivalently, this case may be treated as limiting as @ — 0 through either
positive or negative values.

(ii) Finally, the basic equation

d*w/d&? = {uPa?(1+§2) -3 w (1.10)
provides approximations to Mathieu functions for a range of parameters in which none of the
foregoing is suitable. Its solutions have the form

w = (uad)t Z,(ual),

where Z, denotes a modified Bessel function of order v; v = ua if the sign in (1.10) is positive
and v = iua if the sign is negative.

In the same way as for equation (1.9), the Liouville transformation is constructed so that
the zeros of the factor (1 + ¢{~2) in (1.10) correspond to a specified pair z,, z, of simple zeros of
f(z), the parameter o being given by

[Trreniee - |

the integral being taken along a suitable path. It again turns out that + ué-progressive paths
are appropriate in (1.54), where

inee  if the sign is positive

. o . 1.10qa
noe  if the sign is negative, ( )

£ = ocf (1+¢2)}de. (1.105)

It may be remarked that whereas, with the basic equation (1.9), the inverse transformation
¢ - z will normally be regular in an extended region containing the interval [ —a?, at], the
corresponding property does not hold for equation (1.10), since |£| - o0 as { - 0. The trans-
formation { - £ used here is a modification of that used by Olver (19546) to derive asymptotic
series for Bessel functions of large order.

The following remark illustrates the fact that the parameter u need not be thought of as
large. In its application to the Mathieu equation, this basic equation, with the use of the
estimate (1.5a), leads to approximations which are uniformly valid on a fixed unbounded
region as u — 0, provided that o varies with # in such a way that (ua)-! remains bounded;
see V, §4.

(¢) At this point a pattern emerges, for the variable £ introduced in connection with the
basic equations (1.7)—(1.10) is in every case the same as the independent variable in equation
(1.64); in fact the Liouville transformation (z, y) - (&, w) may be regarded as the composition
of the fixed transformation (z, y) - (§, v) and the inverse of the transformation (¢, w) — (&, v)
corresponding to a particular basic equation. Thus the appropriate paths, as described in
either the £- or the z-plane are the same in every case. It follows that the domains of validity
are the same also with the exception that certain cuts —or, in the case of equation (1.8),
frontier arcs — are now included in the domain, and the appropriate estimate (1.54) remains
valid and realistic on and in the neighbourhood of such a cut or arc.

As an illustration, consider the Mathieu equation

d?/dz?+ (A +2k2 cos 22) y = 0,
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with A > 2% A and % being real. The identification with (1.1) is
u=nh,

Sf(2) = —(2cos 2z+A/h?),

I
=

&(2)

f(2) is an entire function with simple zeros at z = (n+})n +ia, where cosh 2a = }A/A%

3

- \
<> &/
O F A N\
A= L 2 W\
T O T/T/ —_—
— o —s— §-progressive path
- 0 T 27 —— principal curve
§g > cut
EE ! S\ shadow zone
%5, ° ; EN O~
=Z ! \\
IS \
o=
z-plane
Ficure 1. The Mathieu equation, A > 2k2%: principal domains for the Liouville transformation.
Figure 1 shows zeros of f(z) — three of them labelled 4,, 4,, 4, —, £-progressive paths originating
from ooi and also level curves of Re £ issuing from zeros of f(z); at each point there are three
curves meeting at equal angles. Generally, level curves of Re (uz£) issuing from transition points
of the differential equation are called principal curves’, and the regions into which they divide
4 the z-plane are called ‘principal domains’ or ‘Stokes regions’. Figure 1 also shows a ‘shadow
/l/ : zone’ not accessible by such progressive paths, and cuts whose removal together with the
- shadow zone leaves a region on which & has a single-valued branch, and every point of which
;5 P is accessible by a progressive path lying in the region. The cuts and shadow zone (if any)
O H depend on the choice of initial point, as also does £ as a function of z. The principal curves and
[~ E domains do not depend on |«|, but do depend on arg « and also on any other parameters.
= O Applied to the basic equation (1.6), the estimate (1.54) is not valid on the cuts or on the
Eg shadow zone with its frontier, and becomes arbitrarily large in their neighbourhood. With

equation (1.7) and with = 0 ¢ither at A, or at 4,, (1.5a) becomes valid on the corresponding
cut, though not near its other extremity in the case of 4,. Equation (1.9) can be used to give
approximations which remain satisfactory in the neighbourhood of both 4, and 4,, provided
that sinh 24 is not too large; (1.5a) is then valid on both cuts. Finally, if sinh 24 is not too
small, equation (1.10) gives approximations which remain satisfactory in neighbourhoods of
both 4, and 4,, (1.54) then being valid on the cut joining them and on the frontier of the

PHILOSOPHICAL
TRANSACTIONS
OF

shadow zone. In every case, the domain of validity is in other respects unchanged.
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106 W. BARRETT

It must be emphasized that this domain is the largest on which (1.54) is valid; the feasi-
bility of estimating the variation, or the usefulness of the result — that is, whether it is sufficiently
small —is quite another question, and for these reasons the necessary calculations for the
Mathieu equation will be made in more restricted regions, which are nevertheless sufficiently
extensive to permit the construction of a comprehensive set of asymptotic formulae.

2. THE DERIVATION OF THE FORMULA (1.5)

There follows an account, without detailed proofs, of an approach to this problem which is
readily applicable to the five basic equations already referred to, with either real or complex
variables. The method depends on the use of suitable majorant functions for the basic func-
tions, and also for their derivatives if approximations are required for the derivatives of solutions
of (1.2). A brief description of the construction of such majorant functions appears in §6.

Let Y,, ¥, be two basic functions, solutions of (1.3), and suppose that Y,({), Y,({) are corres-
ponding real-valued majorant functions:

%O < ¥y(§) (1=1,2)

defined on some region; suppose also that there is a family of paths in the z-plane with common
initial point z, whose images in the {-plane lie in this region and have initial point §,, every
path v of the family to have the following property.

ConprrioN A. Y,(§) /Y, (&) is monotone non-decreasing on y.

It can then be shown without difficulty, by applying standard estimation procedures to the
iterative solution of the integral equation referred to above, that the following theorem holds.

THEOREM 1. The solution w,({) of (1.2) such that wi (&) = Y1(&,) and wi(&,) = Y1(&,) satisfies
wy(8) = 1(E) + Y. (E) n, (2.1)

where 7] < exp {vgrf21//*1Y1(t) Y,(t) v (t) ¢(2) dt}— 1, (2.1a)

W being the constant Wronskian of Y, and Y,, t a variable with the same domain as &, and I' the image,
with terminal point §, of an arbitrary path 7y of the family.
Further, if Y1, Yy have majorants Y§ (L), Y5 (&) with the property that

YH(E)/Y$(E) < c¥y(8)/Ya(8)
Sfor some constant c, then w' (&) = Y1(8)+YF () 7%, (2.2)

where I7*| < exp ‘v?r f (146) WY,(8) Yolt) ¥(2) $(0) dt}—l. (2.24)

By means of (1.45), this theorem gives corresponding approximations with remainder
estimates for solutions of (1.1) and for their derivatives; the formulae for the latter involve
both (2.1) and (2.2). It is also readily verified that the result (2.1) with estimate (2.1a) is
essentially invariant under Liouville transformations, that is

(a) the majorant functions Y,, Y, provide naturally majorants for the corresponding solu-
tions of any Liouville transform of (1.3), which satisfy condition 4; and

(b) the approximations and remainder estimates for solutions of (1.1) obtained by applying
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theorem 1 with a transformed basic equation are not affected by the transformation. This does
not, however, hold for the derivatives of solutions.

For a path originating from infinity, as in §1, the integral equation defines a solution w,({)
asymptotically equal to ¥;({), and (2.1), (2.2) with estimates (2.1a), (2.24) remain valid; the
question whether w,(§) is characterized by its asymptotic property will be examined later.

To apply theorem 1 to solutions of (1.1), a basic equation having been chosen, it is necessary
to consider the choice of basic functions, the construction of majorant functions, and the result-
ing regions of validity in the z-plane, regions accessible from z, by paths on which condition
4 is satisfied and the variation in (2.1a) is finite. The equation (1.6) presents little difficulty.
The natural choice of majorants for the solutions e+% is |e+*|, and the quotient of these is
monotone if and only if the path is + u&-progressive. By choosing these two solutions for ¥}, ¥,
in either order, the estimate (1.54) follows immediately from theorem 1, since ¢({) in (1.3)
is here the unit constant function. The domain of validity consists of those points that are
accessible from z, — finite or at infinity — by + u-progressive paths with the appropriate sign,
on which the variation in (1.54) is finite. If ¥; = cosh u£ or sinh u§ and ¥, = e~%, with
£ = 0 as initial point, then Y,({) = cosh Re (z£) is suitable and (1.54) is valid with ¢ = 2.
The paths must be u§-progressive, so that points with Re (¢£) < 0 are not accessible; this is
remedied by taking ¥, = e*.

To determine suitable solutions Y, Y, for other basic equations (1.3), consider the corres-
ponding map

§— £:dg/dE = [4(O)]3,

and construct principal curves and domains in the {-plane corresponding to the transition
points of (1.3). For each such domain on which Re (z§) is unbounded above, theorem 1 with
(1.6) as basic equation can be used to construct a solution Y (&) of (1.3) that is exponentially
small as Re (z£) - oo in that domain, and is asymptotically equal to [¢(§)]-% e~*; for a
principal domain on which Re (z§) is unbounded below, there is a similar solution with the
opposite sign in the exponent. This formula also provides an estimate for Y({) on the region
accessible by &-progressive paths originating from infinity in the given principal domain.
Indeed, for basic equations (1.7), (1.9), (1.10) it can be shown that Y({) has a majorant

satisfying (see §6 below)
Y(§) = 0(8) e+ 0(1) (2.3)

on this region including cuts and frontier arcs; ¢({) is positive and depends on « and on any
other parameter but not on the original choice of principal domain, and

(%) = 1#(&)[2 0(1) (2.34)

uniformly with respect to { and the parameters. The situation is less simple for the equation
(1.8) (Olver 1974, ch. 12).

Let Y,(&), Y5(&) be two such solutions; then except in certain cases the intersection of the
domains of validity of the corresponding majorants (2.3) contains a set of principal domains
on which the signs of the exponent in (2.3) are opposite for the two majorants and whose union
forms a region which is connected and contains the initial principal domains for both ¥; and
Y,; thus the two solutions satisfy condition A for £-progressive paths with appropriate sign.
It can be shown further that, for given Y;, every point in the {-plane that is accessible from in-
finity in the initial principal domain for Y, lies in this region for some choice of ¥,. From these

12 Vol. go1. A
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results, including (2.34), it can be concluded that (1.54) is valid on domains of the form
described in §1.1(c). The extension to even and odd basic functions, which exist for equation
(1.9), involves complications and will not be discussed. For an account of the topology of
principal domains see Evgrafov & Fedoryuk (1966).

3. THE ERROR-CONTROL FUNCTION

For application in parts IV and V it is necessary to obtain expressions for the indefinite
integral in (1.54), for each of the four basic equations (1.6), (1.7), (1.9) and (1.10); following
Olver’s terminology, this integral will be called the ‘error-control function’ (e.c.f.). In con-
nection with the calculations that follow, the general remarks at the beginning of part III on
Liouville transformations should be borne in mind.

The general formula for the (£, v) Liouville transform of (1.3) is

d?/dg? = [$(5)]7" [#*¢(8) +x(8) +3{&, & v, (8.1)
and a convenient formula for the Schwarzian derivative is
LU IR LLLIG) ) -

Let (1.1) have (&, v)-transform (1.64):
dn/dg? = {2+ (2)} o; (3.2)
then the e.c.f. for the L.—G. method is
f ¥ (2) dE. (3.24)
Next, transforming (1.7) to the variables (£, v) gives
d%/dg? = {u*—F(E—£0) "} v,
whence it follows that the application of the inverse of this transformation to (3.2) gives
d*w/d8 = {*C+ LY (2)} w, (3.3)
where ¥1(2) = ¥(2) +%6(E— &) (3.39)
with ¥(z) as in (3.2); it has already been seen that, if g(z) in (1.1) is analytic where { = 0,

then the same is true of {y(z). Since ¢(§) = [dE/dE]? = &, the e.cf. is

[ at = [n) de (3:38)
Similarly, the (&, v)-transform of (1.9) is
d%/dge = (£ 3(£2— )= = 5a(E2— )P} v,
and applying the inverse transformation to (3.2) gives

d*w/d = {+ }u*(§—a) +H(E—a) ¥y(2)} w, (3.4)
where Ua(z) = Y(2) +3(§2—o) "2+ 5ot (§2— o) 2. (3.4a)
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The term ({2—a) ¥,(2) is analytic at z,, z, if g(z) is analytic there, and the e.c.f. is

f Val2) dE. (3.45)

It is assumed here and for the basic equation (1.10) that & and the constant of integration
in the definition of £ are chosen in accordance with §1(5).
Finally, the (£, v)-transform of (1.10) is
d%/dg? = {u?—a 2B} F 1) (££1)}o,

and applying the inverse transformation to (3.2) gives
d®w/d8® = {[u®+y5(2)] (1 £ £%) - 32} w, (3.5)
where Ya(2) = ¥(2) +a 28 F 1) (2 £1)7% (3.54)

Again, the term (1t {~2) /5(2) is analytic at the relevant transition points zy, 2z, if g(z) is
analytic there, and the e.c.f. is

[ wt@) de (3.58)

4. CONNECTION COEFFICIENTS; IDENTIFICATION OF SOLUTIONS

Several techniques have been used to estimate connection coefficients by means of the methods
under consideration. The following summarizes results that will be needed later.

(a) Lety; (j = 0,1, 2) be three solutions of (1.1) and let v; be the corresponding solutions
of (1.6a), on some domain or arc, with prescribed branches of £ and of [ f(z)]-}. Suppose
further that

v; = a;exp [(=1)7 uf] (1+9y), (4.1)

where the a; are complex constants and
|"77' I S €< %3

and also that there are two points in the domain or on the arc where £ takes values &', £” such
that [sinh [22(§ —£")]| > }. Then it follows by an elementary calculation that there is a
connection formula

Yo = %Yo+ 1Yy, (4.2)
or equivalently, Uy = Qoo+ 0ty 0y, (4.2a)
and that %oaofa, = 1+ 8, (4.3)

aa1/ay = exp [u(§' +£")] 6y, (4.3a)

where |8, [8;] < ke, k being an absolute constant. If the domain or arc of validity of (4.1)
extends to infinity in the £-plane, then the existence of a suitable pair of points is automatically
assured. Also, if (4.1) and the corresponding formula for derivatives,

dv;/d€ = (—1)7 ua; exp [(=1)7 uf] (1+7),

where |7j| < ¢, are valid at a single point at which £ = £’, then (4.3), (4.34) remain true,
but with £+ £” replaced by 2£'.

12-2
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If the parameters or the domain vary in such a way that 7; - 0 uniformly, then (4.3) gives
an asymptotic formula for a,. No such formula is obtained for a,; for this it is necessary to use
a domain on which the roles of v, and v, are interchanged. In applying these formulae, the
branches of £ and of [f(z)]~* in terms of which the three approximations (4.1) will have
been obtained will usually be different; the necessary substitutions must be calculated for each
application.

(b) Sharper estimates for connection coefficients may sometimes be found by the use of a
basic equation other than (1.6). Let w;({) be the solutions of (1.2) corresponding to three
solutions y; (j = 0, 1, 2) of (1.1), and suppose that on some domain extending to infinity,

w;(§) = Y;(8) +Y;(8) (4.4)

in accordance with (1.5), where |7;| < ¢ < £y, the majorants having the form (2.8). If Y,({),
Y,(&) are independent, there is a connection formula

, . Y,(8) = ao¥o(8) +a, 11 (8).
Then under suitable conditions,
Y2(2) = ayo(2) +a191(2), (4.5)

where a; =a;(1+6;) (j=0,1) (4.5q)

J
with |8, |8] < Ze.

It is sufficient for the purposes of this paper that (4.4) should be valid on two paths extending
to infinity and satisfying the conditions of (a) above, one path for the estimation of each of
%, ;. It is however possible to formulate conditions for the suitability of a pair of paths, or
indeed of a single path, simply in terms of the topology of the system of principal domains
associated with the problem in hand.

4.1. The identification of solutions

The problem here is to identify a solution of (1.1) constructed in accordance with theorem
1 with a solution defined either by using some other basic equation or by some other means.
If the initial point is finite in the £-plane, this can be done immediately by comparing the
values of the solutions and their derivatives at the initial point. If the initial point is at infinity,
then the concept usually invoked is that of recessive and dominant solutions.

For definiteness, take the path 7y, in §1 to be a —ué-progressive path on which Re (z£) is
unbounded above and which lies in a certain principal domain. Then by using basic equation
(1.6), theorem 1 determines a solution such that

o(£) ~ e (4.6)

as Re (u£) - co in any manner in this domain, subject to convergence of the e.c.f., the paths
used being —ug-progressive. Any solution with this property is termed ‘recessive’ on the given
principal domain.

On the other hand, any solution defined on the same domain by using ué-progressive paths
originating in the same or a different principal domain can be shown to have the property
that

v(g) ~ ce%t
as Re (#£) - o0 in the domain, where ¢ is a non-zero constant. Such a solution is called
‘dominant’. It is clear that the two solutions are independent and hence that the first is
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characterized by the property (4.6). Recessive solutions may be constructed by using other
basic equations; they may be identified by using asymptotic formulae for the basic function
Y, in theorem 1 in terms of the variable &.

It is sometimes convenient to define a solution by means of theorem 1, —uf-progressive
paths being used, but with Re (z£) bounded above on y,. In this case, the argument requires
some refinement, but the conclusion holds that the solution is characterized by the property
(4.6) as £ - co on the path vy,. Finally, two solutions of (1.2) that are asymptotically equal to
the same recessive basic function on two different paths y originating from infinity in the same
principal domain are identical provided that the e.c.f. has appropriate convergence properties;
it suffices that ¢ ({) = £&-1-° O(1) (8 > 0) uniformly as £ oo in the domain. This remark
serves to simplify the specification of the required family of progressive paths.

5. ESTIMATATION OF THE VARIATION OF THE ERROR-CONTROL FUNCTION

Theorems for this purpose which have a degree of generality, but which impose restrictions
other than the essential convergence properties of the e.c.f., have limitations when applied
to a problem exhibiting the wide range of configurations which arise with the Mathieu equa-
tion. The following procedure, which avoids this difficulty, was therefore used to construct the
estimates required in parts IV and V.

First, an estimate for ¥(z) in (1.2) is found, of the form

¥(2) = ¢¥*(2) O(1), (5.1)

uniformly with respect to z and any parameters, where ¢*(z) is not only analytic but is such
that

(2) = [we(2) d (5.10)

can be found explicitly in terms of £ or of some other convenient variable. There is then con-
structed a class of progressive paths y, depending on the initial and terminal points required
and on the parameters, and satisfying the conditions of the following lemma, with A constant.
A proof of the lemma is given in §5.1 below.

It follows immediately from the lemma that for this class of paths,

var { [ 4(2) ag) = var { [ 42(2) dg} 01) = sup #2113 (1)
uniformly. ! ! : !
LemMA 1. Let 'y be a piecewise analytic path in the z-plane with parameter T and let ¥* be a_function

analytic on a domain containing vy.
If var arg {d¥P*(z)/dr} < M, (5.2)
Y

then var ¥*(z) < sup {|¥P*(2)|} M',
where M' depends only on M. ! !
For a brief account of the variational operator as applied to real-valued functions that are

not necessarily continuous (see, for example, Olver 1974, ch. 1, §11). The term ‘piecewise
analytic’ is understood to mean that there is a finite set of compact intervals covering the
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domain in 7 of the defining function of ¥ such that the restriction of this function to each of
the intervals is analytic, including the end points, with the proviso that, if ¥ extends to infinity,
the corresponding subinterval in 7 will be half-open (bounded or unbounded).

It may be necessary to construct different estimates (5.1) in different subdomains; the paths
should then be constructed to consist of a bounded number of subarcs, each in one subdomain,
and the lemma applied to each subarc separately. It should be observed that the sharpness
of the estimate obtained for the variation of the e.c.f. may depend not only on the choice of
estimate (5.1) but also on the choice of indefinite integral in (5.1a).

From the lemma there follows a corollary.

CoRrOLLARY. If, on a class of paths 7y, the condition of lemma 3 is satisfied uniformly and if on each
path vy there is a prescribed point z* with the property that

sup {{#7*(2)]} = ¥*(2*) 0(1)

uniformly, then var {P*(z)} = P*(z*) O(1)
uniformly. 4 '

The natural choice for z* is the terminal point where this is possible.

5.1. Proof of lemma 1
Let ¥ = arg d¥P*(2)/d7r

and let S = sup |P*(2)).

It is necessary to examine the nature of 9 as a function of 7, for it is undefined not only at a
Jjunction of two analytic subarcs of y, but also at the zeros (if any) of d¥*(z) /d7. It is, however,
not hard to show that the number of all such points is finite and that 9 is piecewise con-
tinuously differentiable on y, with simple jump discontinuities only. :

First, however, suppose that 9 is differentiable on y. Then

d¥P*(z) d¥P*(z) _
* = — = = _\7 i
va;tr P*(z) = f-, I d f 3¢ dr

: dd
= [P*(z) e—1%] i * 19
[P*(2) e¥], +1J;Y’ (2) e P dr.

In the general case, this formula may be applied to each of the subarcs y; (j = 0, 1, ..., n) on
which ¢ is continuously differentiable, and the result summed.

Let z; (j = 1, 2,..., n) be the junction of y,_; and y;, and let the two limiting values of D)
at z; be 9y, 9. Then ¥*(z) e~ has a discontinuity at z; with jump

V¥ (2,) [e¥i—e ).

The result of the summation may thus be expressed as
2 , .8 dd
var P*(2) = [P*(z) e 1], — T P*(z)) [eVi—e ] +i 3 f P*(z) e1¥ — dr.
y =1 i=0Jy dr

The first term of the right-hand member does not exceed 2§ in absolute value. Further,

le-ti—et] < |95-9,
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whence it follows readily that the sum of the last two terms does not exceed § var ¢ in absolute

value, and so finally that ’

var P*(z) < §(2+var9).
¥ ¥

Lemma 1 follows immediately; in fact we may take M’ = 2+ M.

6. MAJORANT FUNCTIONS

Olver has given majorant functions for Airy functions (Olver 19544) and for parabolic
cylinder functions (Olver 1960), both with complex variables. The derivation involves ob-
taining by the methods described above, an L.-G. approximation for the Airy function and
in turn an approximation in terms of Airy functions for the parabolic cylinder functions; other
basic functions may be treated similarly. However, the forms obtained involve undetermined
constants; this drawback can be overcome in the following manner..

If on some region, normally unbounded, the absolute value of the quotient of the given
basic function and some suitable non-vanishing analytic function is bounded, then the basic
function is majorized by a multiple of the absolute value of this latter function. The appro-
priate factor may be found by calculating the maximum of the absolute value of the above
quotient on the frontier of the region and applying the maximum principle; in practice this
has been found comparatively straightforward. It does not seem feasible to construct such
majorants which are sufficiently realistic both for large values of the variable and near tran-
sition points; however, the pointwise minimum of a suitable pair of such majorants has been
found to be satisfactory. -

For the Airy function Ai (x) the region taken is the sector {x: |arg x| < =} and the provi-
sional majorants are ¢;|x~te~£| and c,|e~¢|, where £ = %t takes its principal value. This leads
to the formula given in V, §2.3, the majorant being of the form

min {¢;|x3|, c,} |e~¥];

the majorants given for Ai (x) when |arg (—x)| < 4= and for Bi (x) are derived from this by
means of known connection formulae (see again V, §2.3).

The general form obtained for majorants for a solution of (1.3) that is asymptotically equal
to A[@(£)]~t e~ as Re (uf) - 00 may conveniently be written

{Ale~+| + Blew]} 6(0), (6.1)
a typical form for the factor () being ‘
6(¢) = min {&,]$(8)| 4, eay

where ¢;, ¢, depend on any subsidiary parameters in the basic equation; they niay, however,
without significant loss of sharpness, be chosen to be independent of the region and of the
particular solution of the basic equation. The second term in curly brackets in (6.1) is required
only in certain regions. .

The following formulae for #({) have been obtained. The parameter « has been assumed to
be real; it has been set equal to unity, this involving no further loss of generality, u being in
effect a scale factor. The independent variable is denoted by x in each case.


http://rsta.royalsocietypublishing.org/

%

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY LA

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

114 W. BARRETT
(a) Basic equation (1.7); Airy functions:
6(x) = min {1.12]x|-%, 1.29}.

(b) Basic equation (1.9); parabolic cylinder functions, ordinary or modified, with real
parameter a:
6(x) = min {1.2]%% + 4a|~, 0.95075, 1.2},
the upper sign referring to ordinary functions.
(¢) Basic equation (1.10); Whittaker functions,

3%, (x) or 2, (x),
Z representing a modified Bessel function:
6(x) = min {1.2|x2 + v2|-1, 1.350-3),

provided that » > 0.5, the upper sign referring to the case of real order.

The majorants so obtained satisfy condition A (§2). Also, the formula (2.3) required to
derive (1.54) is valid even on a region where both terms are required in (6.1); for if £ is defined
by continuation along —u§-progressive paths, the second term never in fact significantly exceeds
the first. As an illustration, this is readily verified for the majorant for Ai (x) on {x: |arg (—x)
< in} given in IV §2.3. '

The resulting estimates (1.54) appear to be closely comparable in sharpness with those
given by Olver (1974) for complex variables, using a more sophisticated approach to the
solution of the integral equation than that proposed here, and are more readily calculable
numerically.

6.1. Application

Suppose that an approximation for a solution of (1.1) has been found in terms of a basic

function, the solution of (1.3):

y(2) = [f(2)/$(O1HY(O) + Y (L) 7}, (6.2)

where an estimate has been obtained for . Then # provides an estimate for the remainder
relative to the principal term, except near zeros of the basic function, and this information
may suffice.
Otherwise, a more convenient form for calculation is obtained by substituting (6.1) into
(6.2) to give
y(2) = [f(2)/$(O17 {Y(E) + [A]e™| + Ble*t|] 0(2) 1}, (6.3)

the factor [ f(2)/¢(£)]%, as well as 0({), being bounded in the neighbourhood of the relevant
transition points.
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